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We consider uniform polynomial approximation on [-1, 1). For the class of
functions which are analytic in an ellipse with foci ±1 and sum of semiaxes greater
than 8.1722..., we prove several asymptotic results on the best approximation. We
describe the CF-approximation method and prove that, for our class of functions,
the CF-approximation is "not far away" from the best one. With the help of this
result we show a Kadec type result on the alternants and prove a conjecture of
Poreda on the strong uniqueness constants. Also we prove a lemma on the distance
between the best approximation and a "good" approximating polynomial. © 1988

Academic Press, Inc.

1. INTRODUCTION AND DESCRIPTION OF RESULTS

We consider uniform approximation on the interval [-1, 1] by
polynomials, using the following notation:

C[ - 1, 1] = {f: [ - 1, 1] -+ IR :I continuous },

I1III = I1III [-1. I] = sup{ I/(x)l: x E [ -1, I]},

JIn = {p : p is a real polynomial of degree at most n},

en(f)=inf{111 - pll: PEJIn}.

In the sequel we fix an IE C[ -1, 1]. The unique best approximation to I
in JIn will be denoted p:(f) or simply P:, so that

Freud [Fr] discovered that the operator 1-+ p:(f) is pointwise Lipschitz
continuous. Later Cheney [Ch] gave an easy proof of that result based on
the notion of strong unicity. He has shown that, for all f, g E C[ -1, 1],

IIp:(f)- p:(g)1I ~_2_
III - gil""Yn(f)'
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where Yn(J) > 0 is the largest constant Y satisfying, for all q E lIn'

III -qll ~ III - p:(f)11 +y Ilq- p:(f)II.
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(1.2)

Strong unicity has been discovered by Newman and Shapiro [N + Sh].
In a paper by Bartelt and McLaughlin [B + M] one can find the following
characterization of the strong unicity constant yAJ):

Yn(J) = min max sgn(r:(x))· w(x),
WElln xeE(r:)
Ilwll =1

where r: = I - P: and, for r EC[ -1, 1],

E(r) = {XE [-,1]: Ir(x)1 = Ilrll}.

(1.3)

The strong unicity constant (1.3) can also be defined on arbitrary Haar
subspaces V of qX), X being a compactum. Then lIn is replaced by V and
the norm is to be taken on X.

In view of Eq. (1.1) it would be interesting to know if the sequence
(Yn(f)-I)nEN is bounded for any particular IEC[ -1,1]. Poreda [Po]
conjectured that for nonpolynomial I the sequence is unbounded or,
equivalently,

lim infYn(f) = O.
n~ 00

(1.4)

By the triangle inequality Yn(f) ~ 1 for all IE C [ -1, 1]. For any
polynomial I EIIm one has Yn(/) = 1 for n ~m. Poreda's problem is still
open, but we can solve it for a class of analytic functions. Let

and let y* be the smallest positive zero of A.. Then y* ~ 0.122366 ... and, if
we denote by E r the closed ellipse with foci ± 1 and sum of semiaxes r, the
following theorem will be proved.

1.1. THEOREM. Let IEC[-I,I] have an analytic continuation in Er

with r> I/y*. Then (1.4) holds.

The proof takes some time and will be given later. Of course the constant
y* is of technical nature and most probably not optimal.

In the sequel we will make use of CF-approximations. This method has
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been described in detail by Hollenhorst [HoJ, who refers to Darlington
[Dar]. Further work on that topic has been done by Gutknecht and
Trefethen [G + Tr]. The method can be described as follows.

Let f be analytic in an open set containing the closed ellipse E lly ' Then f
is expandable in a series of Chebychev polynomials

00

f(z) = L (Xn Tn(z)
n~O

converging in that ellipse. One has

lim sup l(Xn I lin < y.

(1.5)

(1.6)

A theorem of Caratheodory and Fejer (see [GoIJ) shows that there is a
Blaschke product for all mEN, such that

n n+m

= L cvzv+ L (Xv zv (1.7)
v = - 00 v=n+l

with all its poles satisfying Izv I:::;; 1. The series converges outside the
smallest circle with center °containing all the poles. Since the coefficients
(Xv are real and the Blaschke product is uniquely determined, all the coef­
ficients Cv are real. We introduce now the linear isometric mapping ~ from
C[ -1, 1J to CEO, nJ defined by

J(t) = f(cos t).

It follows that

and

00 00

J(t) = L (Xv cos vt = Re L (Xv zv
v=o \1=0

with z = eit. Now one can define the CF-approximation to f by

(1.8 )

(1.9)

(1.10)

(1.11)
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Then Pn,m is in fact a real polynomial in lln' For the error function one has

where z = eit
,

-n-I

Hn,m(z) = L cvzv,
V= - cJ)

v=n+m+ 1

(1.13)

(1.14)

Under certain conditions Hn,m and Rn+ m are negligible and one has good
information on the error function rn,m' The following theorem due to
Hollenhorst shows circumstances where an estimation of Hn,m is possible.

1.2. THEOREM (Hollenhorst). Suppose for y < (Ji3- 1)/6

for k = 2, ..., m.

Then all the poles of qn m lie in

B~(y)= {ZEC: Izi <~(y)}

and

\H (z)\ ~_y_. IlXn + II . J:( )2n+ I
n.m "'1-2y2 1-~(y) .. Y .

Different proofs can be found in [Ho, Bl2, and Gr]. The function
Re qn,m(eit

) has an alternating behaviour on [0, n], with at least n + 2
alternation points. We can therefore use the following theorem to estimate
the distance of the CF-approximation to the best one. The theorem is of
interest on its own.

1.3. THEOREM. Let

be points in [ -1, 1] such that for q E lln and r = f - q,

Let

sgn r(x v ) =(-1 r .sgn r(xo), v= 1, ..., n + 1.

D = max (arccos x v - arccos x v + I),
O~v~n

d= min (arccos xv-arccosxv+I)'
O~v~n
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II P: - qll ~ (Djd)2n . (2n + 1) . (1Irll- min Ir(xy)I).
O~v:!S;n+l

The proof will be given in Section 2. With the help of this theorem we
are able to prove the following result on CF-approximation.

1.4. THEOREM. Suppose that y < y* and f E C [ -1, 1] has an analytic
continuation in the ellipse E I/y' Then we can choose a subsequence
n l < n2 < ... such that for the coefficients in (1.5),

for all fJ.E N, kE N.

Taking co> c> 2 and

. ( In nk )
mk=mt cO'IA(y)1 '

where int(x) denotes the greatest integer smaller than x, we have as k -+ 00,

Ilrnk,mk - r:k II = O(nk
C + I . IAnk,mk I),

Ilf~Jt) - Re qnk.mk(eit)11 [O,n] = O(nk
C + I. IAnk,mk I),

II Pnk,mk - P~k II = IIrnk,mk - r~k II = O(nk
c

+ I . Ilr~k II)·

The proof will be given in Section 3. It should be noted that

(1.15)

Compare also the results by Gutknecht and Trefethen [G +Trl With the
help of these methods it is possible to derive results about the extremal set
E(r:). For let us decompose E(r:) in nonempty sign components
EO,n' ..., Ej(n),n such that

-1 ~ Eo.n< ... < Ej(n).n ~ 1,
j(n)

E(r:) = U Ey,n,
y~O

(1.16 )

for v= 1, ..., j(n),

and choose any point

Then we can prove a result on ty,n'

(1.17)
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1.5. THEOREM. Let the hypothesis of Theorem 1.4 be satisfied. With the
notation of that theorem one has for j(n~ in (1.16),

for all k~K,

K big enough. For the points in (1.17) one has as k ~ 00,

sup sup larccos tv,nk - arccos sl = O(n;;C),
O~v~nk+l seEV'"k

with C = c/2 + 1/2.

The constant C in this theorem can be made arbitrarily large. For our
class of functions this theorem is an improvement over a theorem of Kadec
[Kad], which holds for all f E C[ -1, 1]. The proof will be given in
Section 4.

With the help of CF-approximation it is also possible to get results on
the asymptotic behaviour of the strong unicity constant. We refer to [Gr].
(Compare also [H + Sw].)

2. INEQUALITIES ON STRONG UNCITY CONSTANTS

In order to prove Theorem 1.1 we need the following inequality for the
strong unicity constant in (1.3),

2.1. LEMMA. Suppose for the sign components in (1.16) j(n) = n + 1 and

sup Isup arccos Ev,n - inf arccos Ev,n I :::::; c.
O~v~n+l

Then

1 cn
Yn(f) :::::; n + 1+2"'

Proof Let fA!) denote the strong unicity constant to! approximated
with respect to Cn' Then by Eq. (1.3) and since ~ is isometric,

(2.1 )

Let Xv be the midpoint of the smallest interval containing arccos Ev,n' By a
theorem of Blatt [Bll] there is a cosine polynomial q E Cn with Ilqll = 1
and

1
max (-1)"q(x v ) :::::;--1'

O';;v';;n+ 1 n + (2.2)
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(In fact Blatt shows that if the set E(f:) consists of n + 2 points then the
strong unicity constant is ~ 1/(n + 1). This implies the existence of a
normed q with (2.2).) By an inequality of Bernstein,

Putting (2.2) and (2.3) together and using (1.3) yields our result.

Iq'(t)1 ~ n, for all t E [0, n]. (2.3)

Q.E.D.

Our next aim is the proof of Theorem 1.3. For this we need a discrete
version of the strong unicity constant. Let n + 2 points,

(2.4)

in [ -1, 1] be given. Assume E(r:) = {xo, ..., X n + d. Then from (1.3) it is
clear that YnU) does not depend on f In fact

Yn(xo, ...,xn+d= min min (-I)"·w(xv)' (2.5)
welln O~v~n+ 1
IIwll =1

This discrete strong unicity constant can be defined in the same way in en
and also in the set of all trigonometric polynomials of degree ~ n, which we
denote by lrn' (In the latter case one has to take 2n + 2 = dim lrn + 1 points
in [0, 2n).) Its important role in our discussion stems from the following
lemma.

2.2. LEMMA. Let p E IIn be such that r = f - p alternates in sign on a
point set (2.4). Then

II p - p: II ~ Yn(XO' ... , Xn+ d -1 . (11rll - min Ir(xv)j)·
O~v~n+l

Proof For (J = ± 1 we get

Ilrll ~ Ilr: II ~ (J. (-1)". r:(x v )

= (J. (_I)v. r(xJ + (J. (-1 r· (p - p:)(x v )

for all v= 0, ..., n + 1. Thus

Ilrll ~ min Ir(xv)1 +Yn(XO' ..., x n+d ·11 p - P: II·
o::s;; v::S;;n + 1

Q.E.D.

To any point set (2.4) we associate another point set in [0, 2n) by

and

tn + 1 - v = arccos x v,

tv = 2n - t 2n + 2 - v ,

for v= 0, ..., n + 1

for v = n + 2, ..., 2n + 1.

(2.6)

(2.7)
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O~to< '" <t2n + 1 <2n.
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(2.8)

If we denote by Yn(tO, .•. , t2n + d the discrete strong unicity constant with
respect to Tn, defined as in (2.5), we have clearly

Cline [C1] gave a characterisation for the strong unicity constant, which
we write down for the trigonometric case (but analogous formulas hold for
any Haar subspace).

where the tv are as in (2.8), qv E Tn, and

(2.10)

for all k = 0, ..., 2n + 1, k #- v. (2.11)

Define Lv,1' E Tn for 0 ~ v, 11 ~ 2n + 1, v#- 11, by

for k = 11

for k#-v,ll.
(2.12)

Then

2n+ 1

qv= L (-l)I'L v,W
I'~O

I'''''v

We need a stronger version of (2.10).

(2.13 )

2.3. LEMMA. Assume we have a point set as in (2.8) and define tv for each
v E 7L as a 2n-periodic continuation. Then with the trigonometric polynomials
in (2.11) we have

and

(2.14)

2n+ 1

Iqv(t)1 = L ILvjt)l,
1'=0
I'''''v

(2.15 )
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Proof Assume (2.14) is wrong. By (2.10) there must be atE [tv, tv + I]
such that for a J1. E {O, ..., 2n + 1},

Iq!'(t)1 > max{ Iqv(t)I, Iqv+ l(t)I}.

Of course J1. 1= v, J1. 1= v+ 1, and t E (tv, tv+ d·

First Case.

Since qv+ 1 cannot have 2n + 2 zeroes in [0, 2n) we have

Thus

Iq!'(t)1 = ( -1 r q!,(t) > Iqv+ 1(t)1 ~ ( _1)V qv+ 1(t),

( - 1r q!'(t v+ d = - 1~ Iqv+ 1(t v + 1 ) I = (- 1rqv+ 1( tv+ d.

We get a zero of q!'-qv+1 in (t, tv+l ]. But this function has 2n zeroes in
tk> k 1= J1., and k 1= v + 1. It has therefore 2n + 1 zeroes in [tv, tv + 2n), which
is a contradiction.

Second Case.

In an analogous way one gets a zero in [tv, t) and a contradiction.

Because of (2.13) for a proof of (2.15) we need only show that ( - 1)!'Lv.!,
has the same sign for all J1. 1= v on [tv _ I' tv + I]. But each Lv,!' has 2n sign
changes at tk> k # v, and k 1= J1.. Thus

sgn Lvjtv)= (_1)!'-V+ 1 sgn Lv,i t!') =(-lV- v+I.

Since Lv,!' has constant sign on (tv- j, tv+ d Eq. (2.15) follows. Q,E.D.

2.4. LEMMA. Suppose we have a point set as in (2.8) and for 0 < d ~ D

for v = 0, ..., 2n,

d~ to + 2n - t zn + 1 ~ D.

Then

Equality holds for d = D.
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Proof The case d=D=n/(n+ 1) may be found in Eel]. (In fact it suf­
fices to show Ilqo II = 2n + 1 for tv = vn/(n + 1), v= 0, ..., 2n + 1, because of
(2.10) and the invariance of 1rn under shifts. But

(
z2n+ 1_11)

=Re zn+l_ .-
z-1 zn

with z = eit
.)

The rest of the lemma is proved by comparing with the equidistant case.
It suffices to show

Iqo(O)1 :::; (D/d)2n+ 1. (2n + 1).

Using invariance properties of lr n one gets

Then the result follows with Lemma 2.3.
We may assume now to> O. We construct equidistant points

O<So< .. , <S2n+l <2n

with

D
tV:::;n/(n+ 1) 'Sv,

D
2n - tv:::; n/(n + 1)' (2n -sv),

This can be done by setting

n/(n+1)
So = . to,

to+2n-t2n +1

for v = 0, ..., n,

for v = n + 1, ..., 2n + 1.

for v= 1, ..., 2n + 1.

(2.16)

To these equidistant points belong trigonometric poynomials KV./l defined
in the same way (2.12) as LV./l with respect to the tv' We can use the
following representation (similar for Kv•

Il
):

(2.17)

640/55/1-7
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Due to (2.15) we need only show ILo./l(O)1 ~ (Dld)2n . IKO./l I for all Jl # O.
By (2.17) we can reduce this to

for r = 1, ..., 2n + 1, r # Jl.
One can show

Isin yl ~IX ·Isin xl, for all x E [0, nI2), IX ~ 1, y E [0, IXX]. (2.18)

From (2.16) and (2.18) one gets for r= 1, ..., n,

Isin(trI2 )1 ~ n/(n
D
+ 1) . Isin(srI2 )1 (2.19)

since SrE [0, n]. Since 2n-srE[0,n] for r=n+l, ...,2n+l, one gets
(2.19) for those r, again using (2.18).

Now take r # Jl.

First Case. It/l-trl~lsll-srl. Then

It/l-trl ~ IJl-rl·d,

IS/l-srl = IJl-rl·n/(n+ 1).

Since sin is a concave function on [0, n] we get

(2.20)

Second Case. It/l- trI~ IS/l- Sr I· Now

I(2n + tr) - t /l I~ I(2n + Sr) - S/l I

and

I(2n + tr) - t /l I~ (2n + 2 + r - Jl) .d,

1(2n + sr) - s/ll = (2n + 2 + r - Jl)' n/(n + 1).

In the same way as in the first case one gets (2.20). By (2.19) and (2.20) the
proof is complete. Q.E.D.

Proof of Theorem 1.3. The proof of this theorem is now a consequence
of Lemmas 2.2, 2.4, and inequality (2.9).
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3. RESULTS ON THE CF-METHOD
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In this section we aim to prove Theorem 1.4. At first we need a trivial
result.

3.1. LEMMA. Let (IXn)nEN be a sequence in iC with

lim sup IlXn Ilin < y < 1.

Then there is a subsequence n l < n2 < ... such that

for all kEN, J.L EN.

Proof Take lim sup IlXn Ilin < c < y. Then IlXn I< cn< yn for n~ N, N big
enough. Thus lim IlXn llyn = O. Therefore we can choose a subsequence (nk)
with

for all kEN, J.L EN. Q.E.D.

Thus the first result of Theorem 1.4 follows from observation (1.6). We
fix now any such subsequence, c > 2 and mk due to Theorem 1.4. Since

y < y* < (ji3 - 1)/6 we have y < ~(y) < 1. By Theorem 1.2 we get

II Hnk,mk II s = O( ~(y )2nk+ I . IlXnk+ I I), (3.1)

where we denote by S the set {z E iC: Izi = I} and take the norm on this set.
Also we have

(3.2)

Thus by Eq. (1.12),

Ilfnk,mk(t) - Re qnk.mk(eil)11 [0.21[) = O(ymk ·llX nk + II). (3.3)

Since the Blaschke product (1.7) has constant modulus IAn m I on S we get
by the Cauchy integral formula .

IlXnk+ I I~ IA nk .mk I = Ilqnk,mk II s = II Re qnk,mk(eit) II [0,21<)' (3.4)

Thus



98 R. GROTHMANN

(The functions here are symmetric to n. Thus the norms on [0, n] and on
[0, 2n) are equal.) This motivates the following lemma.

3.2. LEMMA. Let q = qn.m be as in Eq. (1.7) and let all coefficients be real.
We assume for the poles of q,

IZvl<~<I, for v=I, ...,m-l,

and

2~
(m-l) .-< (n+ 1).

~-1

Let r: S ~ iC be a continuous function with

IIRe(r - q)11 s::;; Ilqll s' e

for some 0::;; e::;; 1/2. Then there exist compact sets Ko, ..., Kn+ 1 with

(3.6)

(3.7)

(3.8)

n+1

U Kv={tE[O,n]:IRer(eit)I~lIqlls·(I-e)}, (3.10)
v=o

sgn r(Kv) = (-1 r .sgn r(Ko), for v = 1, ..., n + 1. (3.11)

These sets are uniquely determined. If e =°then Kv= {tv} for v= 0, ..., n + 1.
We have OEKo, nEKn+ l , and

sup Kv - inf Kv ::;; 2· j6e/(n + 1- (m - 1)· 2~/(1 - ~)), (3.12)

sup K v -inf K v _ l ::;; (n + 2· j6e)/(n + 1- (m -1)· 2~/(1- ~)), (3.13)

inf K v - sup K v _ 1~ (n - 2· j6e)/(n + 1+ (m -1) ·2~/(1 + 0), (3.14)

for v = 1, ..., n + 1 «3.12) also for v = 0).

Proof At first we note that there is a continuously differentiable
argument function t/J v on [0, 2n] with

i ..I• (/) 1 - zvz
e"" =---,

z-zv
for t E [0, 2n], z = eit (3.15)

(v = 1, ..., m - 1). We define then an argument function for q by

m-I

arg q(e it
) =arg An,m + (n +m)· t + L t/Jv(t),

v~1

tE[O,2n]. (3.16)
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=1.!!.-l-Zv ZI
dz z - Z.

1-lz.1 2

=lz- zvI 2
'

99

(3.17)

Thus t/J ~ has the same sign for all v E [0, 2n] and clearly this sign is
negative. Thus by (3.6),

1-~ 1+~
- 1+ ~ ~ t/J ~(t) ~ - 1_ ~

for tE [0, 2n]. By (3.16) we get

d .
dt arg q(e") ~ n + m - (m -1)· (1 - ~)/(1 + 0

=n+ 1+ (m-1)· 2~/(1 + ~), (3.18)

d .
dt arg q(e") ~ n + m - (m - 1) . (1 + 0/(1- 0

=n+1-(m-1)·2e;(1-0. (3.19)

With our assumption (3.7) we see that arg q(eit ) is increasing on [0,2n].
Since

t E [0, 2n],

has winding number n + 1 (count the number of zeroes and poles of q in
the unit circle) and

q(z) = q(z), for ZES,

we get intervals 10 , •••, I n +! with OE/o, nE/n +!, and

O~/o<'" <In+!~n, (3.20)
n+!

U I v = {t: IRe q(eit)1 ~A.. (1-28), tE [0, n]}, (3.21)
v=o

sgn Re q(Iv) = ( -1 r .sgn Re q(Io), v = 1, ..., n + 1. (3.22)
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K v is then uniquely determined by

K v= {t E Iv: IRe r(eil)1 ~ Ilqll s' (1- e)},

v=O, ...,n+1. Since Iq(I)I=lq(-I)I=lq(-I)I=llqlls we have OEKo,
n E Kn + I' and clearly K v satisfy (3.9)-(3.11).

(3.12)-(3.14) are now consequences of the mean value formula. We work
it out for (3.12).

sup Kv- inf Kv:::; sup Iv - inf Iv

:::; (arg q(ei . SUP/,) - arg q(e i .infJ,) )/(n +1- (m -1) . 2~/( 1-~))

:::; 2 arccos(1 - 2e)/(n + 1- (m -1)· 2~/(1 - ~))

:::; 2· .j"&/(n + 1- (m -1)· 2~/(1-0).

The statement on e= °is clear by the monotonicity of arg q(e il ). Q.E.D.

Proof of Theorem 1.4. We have already chosen the subsequence
n l < n2 < ... and the m k • For

e=O,

we apply Lemma 3.2. Since mk = o(nk) as k --+ 00, by (3.5) and Theorem 1.2
the hypothesis of Lemma 3.2 is satisfied for k ~ N, N big enough. We get
for the points tv = tv,k (v = 0, ..., nk+ 1),

n/(nk + 1 + (mk- 1). 2~/(1 + ~)):::; It v+ I.k - tv.kl

:::; n/(nk+ 1 + (mk-1) ·2~/(1- ~)).

Also by (3.5)

:::; 2 '1IRe(r- q)lls

=O(ymk·llqnk.mk II s)

and 'nk,mk alternates in sign in the points tv,k' Applying Theorem 1.3 we get

IIrnk.mk - r~k II [-1.1]

~(nk+l+(mk-l)'2~/(I+~))2nk'(2 1).O( mk·l-l I).
-...: nk+l-(mk-l).2~/(I-~) nk + Y nk.mk

(3.23 )
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for any G> O. Thus as k --+ 00

Ilr -r*11 =O(emk.(8+el~/(I-~2l.n .ymk·IA I)nk.mk nk [-1,1] k nk,mk
= O(eCo/P.(Y)I.(8+S)~/(I-el.ln(nk)

·n .yCO/,A(yl,·ln(yl·IA I)k nk,mk

=O(nco/IA(y)l.(In(Yl+(8+e)~/(I-~2»+I·IA I)
k m.mk

101

= O(n;;c+ I . IAnk,mk I).

This is the first inequality in Theorem 1.4. The second one follows with
(3.5). The third one is a consequence of the first two. Q.E.D.

4. PROOF OF THEOREM 1.1 AND THEOREM 1.5

We make use of Lemma 3.2 with

Set

G= Gk = Ilf:k(t) - Re qnk,mk(eit)11 [o,1t]/IA nk ,mk I·

Then by Theorem 1.4 we have

(4.1 )

(4.2)

The hypothesis of Lemma 3.2 is then fulfilled for k ~ N, N big enough
(applying Theorem 1.2 again). If we denote the sets of Lemma 3.2 with
Kv,k> we have for k ~ N,

max (sup Kv,k-infKv,d=o(nL-c+Il/2-1). (4.3)
O~v~nk+l

For the extremal sign components in (1.16) we have

arccos Ev,k £; KV.k> for v=O, ... ,j(nk)=nk + 1andk~N. (4.4)
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Theorem 1.1 follows now from (4.2) and (4.4) if we apply Lemma 2.1. The
second equality in Theorem 1.5 is equivalent to (4.2). To prove the first
equality set

Sv.n= vn/(n + 1), (4.5)

hk = max Iarccos tv+l.k-arccos tv,kl, (4,6)
I.;; v';;nk+ 1

H k = max larccostv+l.k-Sv,nkl. (4.7)
O~ v~nk+ 1

Then we proceed as above and get for v = 0, ..., n + 1,

(4.8)

Using Lemma 3.2 we get

(n - 2· ~)/(nk+ 1 + (mk - 1), 2~/(1 + ~))

~ hk~ (n +2· ~)/(nk+1- (mk - 1)· 2~/(l-~)). (4.9)

Thus

(4.10)

Then clearly for n + 1~ v >,u ~ 0,

larccos tv,k - arccos tll,k - (v -,u)' n/(nk + 1)1 = O(ln ndnk)' (4.11)

Due to (4.3) and (4.8)

larccos tv,o 1= O(ln nk/nd·

From (4.11) and (4.12) we get as k-+ 00,

H k = O(ln nk/nd·

NOTE

(4.12 )

Q.E.D.

This paper is part of the author's Doctoral Thesis at the Katholische
Universitat Eichstatt.
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